Central extensions of gauge transformation groups of higher abelian gerbes
نویسندگان
چکیده
منابع مشابه
Central Extensions of Gauge Groups Revisited
We present an explicit construction for the central extension of the group Map(X, G) where X is a compact manifold and G is a Lie group. If X is a complex curve we obtain a simple construction of the extension by the Picard variety Pic(X). The construction is easily adapted to the extension of Aut(E), the gauge group of automorphisms of a nontrivial vector bundle E.
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBilinear Maps and Central Extensions of Abelian Groups
The main result of this paper is that every nilpotent group of class at most two may be embedded into a central extension of abelian groups, in which the associated cocycle is bilinear (definitions are recalled in Section 1). The result is related to a paper of N.J.S. Hughes (see [2]), in which he establishes a one to one correspondence between the equivalence classes of central extensions of a...
متن کاملCombinable Extensions of Abelian Groups
The design of decision procedures for combinations of theories sharing some arithmetic fragment is a challenging problem in verification. One possible solution is to apply a combination method à la Nelson-Oppen, like the one developed by Ghilardi for unions of non-disjoint theories. We show how to apply this non-disjoint combination method with the theory of abelian groups as shared theory. We ...
متن کاملon component extensions locally compact abelian groups
let $pounds$ be the category of locally compact abelian groups and $a,cin pounds$. in this paper, we define component extensions of $a$ by $c$ and show that the set of all component extensions of $a$ by $c$ forms a subgroup of $ext(c,a)$ whenever $a$ is a connected group. we establish conditions under which the component extensions split and determine lca groups which are component projective. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2006
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2005.10.005